

New schemes for bit pattern media recording

T. Hauet

Université de Lorraine, Institut Jean Lamour (Nancy) HGST-a western digital company (San Jose, USA)

Outline : • HDD Magnetic Recording

- Bit pattern media
- ECC media as a solution
- Auto-assembled nanobumps

≻ Magnetic bit

New schemes for bit pattern media recording

T. Hauet

HITACHI Inspire the Next

<u>Outline:</u> • HDD magnetic recording

- Bit pattern media
- ECC media
- Auto-assembled nanobumps

Magnetic recording : back to basics

"Spin-based data storage", O. Ozatay, T. Hauet et al., "Handbook of nanoscale optics and electronics" Elsevier B.V. (2009)

Magnetic recording : stability and writing process

- **<u>Goals</u>** : decrease the bit size to increase the areal density (1Tb/in²)
 - maintain thermal stability (= Anisotropy * Volume)
 - decrease the noise related to the bits boundaries

Zakopane 2013

Magnetic recording : impact of new physics

New schemes to improve density : Heat assisted recording

O. Ozatay et al. "Comprehensive Nanoscience and nanotechnology" Elsevier B.V. (2010)

New schemes to improve density : Bit pattern Media (BPM)

O. Ozatay et al. "Comprehensive Nanoscience and nanotechnology" Elsevier B.V. (2010)

New schemes for bit pattern media recording

T. Hauet

Outline : • HDD magnetic recording

- Bit pattern media
- ECC media
- Auto-assembled nanobumps

Bit patterned media : A lot of technological issues

Main issues : - Patterning of small, identical and well positioned islands

- Magnetics : stability, readability, writability

- Head must follow a pre-defined data track
- All the above in a cheap and fast mass production

Magnetic recording : lithography technique

Co/Pd magnetic Media deposition by sputtering

Full film Ta/Pd(20)/[Co(4A)/Pd(8A)]₅ /Pd(11A)

High quality of the multilayer interfaces

O. Hellwig, et al. Appl. Phys. Lett. 95, 232505 (2009)

Zakopane 2013

Co/Pd magnetic Media with out-of-plane anisotropy

Co/Pd deposited on Si prepatterned substrates

Problem 1 : Swithing field Hc vs thermal stability

High anisotropy K = high termal stability

High anisotropy K = high switching field Hk

BUT Field created by the Hard disk drive head is limited around 8kOe !

Problem 2 : Switching field distribution

All the bit (dots) magnetizations do not reverse at the same field => Writing errors or data erasure in hard disk drive

auet

We found that misorientated grains seem to have the largest impact

Crystalline structure is the most important origin of SFD

Ion irradiation on Co/Pd Bit pattern media

20keV He⁺ ion irradiation suppresses interfaces but maintains crystallinity

Interfaces provides the leading contribution to K, but only the second order term to the SFD

Crystalline structure is the leading contribution to the SFD but second order to Hc and anisotropy.

T. Hauet et al. Appl. Phys. Lett. 98, 172506 (2011)

Major Switching field distribution origin : granularity

Thomas Hauet

Zakopane 2013

How to control Hc and SFD ?

2 problems to solve on magnetics:

- Hc (dots) / Hk dilemma \leftrightarrow Intrinsic to the material
- − Large SFD ←→ mostly unavoidable because of structural defects

Can we find some magnetic tricks to overpass the material related issues ?

New schemes for bit pattern media recording

T. Hauet

HITACHI Inspire the Next

- **Outline :** HDD magnetic recording
 - Bit pattern media
 - ECC media
 - Auto-assembled nanobumps

How to lower Hc while keeping high thermal stability ?

Possible solution : Modify the magnetization reversal mechanism

D. Suess et al., J. Magn. Magn. Mater. 321, 545 (2009); A. Berger et al., Appl. Phys. Lett. 93, 122502 (2008)

ECC media : Pd interlayer to tune the magnetic coupling

Thomas Hauet

Influence of Pd interlayer thickness in ECC media

Influence of a 2nd Pd interlayer : additional gain

T. Hauet et al., Appl. Phys. Lett. 95, 262504 (2009)

Angular dependance : proof of reversal incoherency

Angular dependance : proof of reversal incoherency

Simulations : J. Park, B. Lengsfield (H.N. Bertram and B. Lengsfield, IEEE Trans. Magn. 43, 2145 (2007))

New schemes for bit pattern media recording

T. Hauet

HITACHI Inspire the Next

- **Outline :** HDD magnetic recording
 - Bit pattern media
 - ECC media
 - Auto-assembled nanobumps

A new method to form assembly of nanodots

S. Matefi-Tempfli et al., Thin Solid Films 516, 3735 (2008)

Bit pattern media on the back of AAO template

L. Piraux et al., Appl. Phys. Lett. 101, 013110 (2012)

Macroscopic magnetic characterizations

Full film vs nanobumps

L. Piraux et al., Appl. Phys. Lett. 101, 013110 (2012)

Origin of the inter-bumps magnetic decoupling

J. Kimling et al. J. Appl. Phys. (2010)

Magnetic force microscopy on the demagnetized state

L. Piraux et al., Appl. Phys. Lett. 101, 013110 (2012)

Thomas Hauet

Zakopane 2013

Demagnetized state due to hexagonal lattice frustrations

✓ Dipolar fields

Origin of disorder in the demagnetized state

- Topological defects
- « Anisotropy and Ms » dot-to-dot distribution

Zakopane 2013

Origin of disorder in the demagnetized state

Long range influence of the structural order

New schemes for Bit patterned media : summary

- Bit patterned media : [Co/Pd]x deposited on pre-patterned substrate
- 2 problems : decrease Hc while maintaining thermal stability decrease the switching field distribution
- ECC type media (incoherent reversal) is a solution to both problems
- Auto-assembled nanobumps system

Coming next :

Heat assited recording + Bit pattern media 1 Tb/inch²

Acknowledgements : Many thanks to ...

M. Hehn, D. Lacour, S. Mangin

E. Dobisz, S. Florez, T. Thomson, J. Park, B. Lengsfield, J. D. Risner-Jamtgaard, D. Yaney, E.E. Fullerton, B.D. Terris, O. Hellwig

E.E. Fullerton

L. Piraux, V. A. Antohe, F. Abreu Araujo, S. K. Srivastava

D. Ravelosona, Sang-Hwan Park, Cyrille Beiné

C. Günther, B. Pfau, S. Eisebitt