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• Diamond  
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Diamond 

• Carbon atoms  
→ 4X attached to each other 
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SP3 SP2 SP 

4 electrons per carbon atom 



Diamond 

• Carbon → 4 bonds 
• Crystal  
• Cubic crystal lattice 

4 
Introduction to Solid State Physics (C. Kittel) 



Chemical 

• Resistant to chemical corrosion  
(survives strong acidic treatments) 

• Biologically compatible  
(no rejection by human body) 

• Radiation hard  
(survives heavy radiation) 

• High electrochemical window 

 5 

Diamond: properties 



Optical / Thermal 

• Broad optical transparency from UV to IR  
(Sun tanning behind a diamond window) 

• High thermal conductivity 
(Fast heat energy transport) 

• Low thermal expansion coefficient 
(Not shrinking much, when cooling down) 
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Diamond: properties 



Electronic / Mechanical 

• High electrical resistivity 
(Difficult to create charge carriers) 

7 

Diamond: properties 



High electrical resistivity 
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Electronic / Mechanical 

• High electrical resistivity 
(Difficult create charge carriers) 

• High electrical mobility 
(Once charge carriers are created, they are easily 
transported) 
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Diamond: properties 



High electrical mobility 
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High electrical mobility 
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Electronic / Mechanical 

• High electrical resistivity 
(Difficult create charge carriers) 

• High electrical mobility 
(Once charge carriers created, they are easily 
transported) 

• Hardest material 
(It scratches everything) 
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Diamond: properties 



Boron:  3 e- 
Carbon: 4 e- 
Nitrogen: 5 e- 
Phosphorus: 5 e- 
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Diamond: doped 



• Boron-doped diamond 
• B binds 1 time less  
• One bond → 2 electrons 
• T = 0 K    
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Diamond: doped (Boron) 



• T = 0 K → T > 0 K 
• Hole floats around 
• P-type semiconductor 
   (holes are Positive 
     and float around)  
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Diamond: doped (Boron) 



• Hole conduction!!! 
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Diamond: doped (Boron) 



• What are the effects of boron incorporation? 

• Improvement of some properties  
 -(Higher conductivity) 
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Diamond: doped (Boron) 
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Higher conductivity 

Borst et al., Diamond Relat. Mater. 4, 948 (1995).  



• What are the effects of boron incorporation? 

• Improvement of some properties  
 -(Higher conductivity) 

but losses for other properties 
 -(Lower hole mobility) 
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Diamond: doped (Boron) 
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Lower hole mobility 

Borst et al., Diamond Relat. Mater. 4, 948 (1995).  



• What are the effects of boron incorporation? 

• Improvement of some properties  
 -(Higher conductivity) 

but losses for other properties 
 -(Lower hole mobility) 
 -(Lower optical transparency)  
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Diamond: doped (Boron) 
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Lower optical transparency 



Outline 

• Diamond  

• Diamond growth 

• Intrinsic NCD layers 

• Boron-doped NCD 
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Diamond growth 

• Bundy et al. 
Phase diagram 
of carbon 
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Diamond growth: Energy diagram 

• Easily over barrier 
   → Diamond unstable 
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Diamond growth: Energy diagram 

• Easily over barrier 
   → Diamond unstable 

• Very difficult over barrier 
   → Diamond metastable 
 

 
Last scenario at 
standard ambient 
conditions. 
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Diamond growth: HPHT (Nature) 

• Bundy et al. 
Phase diagram 
of carbon 

• HPHT 
-Nature’s way  
(till 4 cm diameter) 
 

27 



Diamond growth: HPHT (Nature) 

Size:  
Approximately 12.4 x 10.5 x 8.4 mm 
Location:  
natural diamond rough mined in Congo 
Price:  
$547.20  
 
This natural diamond crystal weighs 6.84 
carats! It is translucent to semi-
transparent with a cubic shape. Its in very 
good condition overall, and it has greyish-
yellowish-green natural color. 

http://www.mineralminers.com/html/diamins.stm 
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Diamond growth: HPHT (Synthetic) 

• Bundy et al. 
Phase diagram 
of carbon 

• HPHT 
-Natures way 
(till 4 cm diameter)  

-Synthetic (Catalytic) 
(Large diamonds (mm)) 
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Diamond growth: HPHT (Synthetic) 
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Diamond growth: Shock wave 

• Bundy et al. 
Phase diagram 
of carbon 

• Shock wave: 
TNT in vessel 
(5 to 10 nm diameter) 
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Diamond growth: Shock wave 

32 
Iakoubovskii et al., Nanotechnology 19, 155705 (2008) 



Diamond growth: CVD 

• Bundy et al. 
Phase diagram  
of carbon 

• Chemical vapor 
deposition (CVD) 
-Highly pure diamond 
-P,N,B-doping 
-Thin or thick layers 
-Polycrystalline diamond 
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Diamond growth: CVD 

ASTeX 6500 
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 Carbon/Hydrogen-ratio (C/H-ratio): low 
 Doping (TMB, PH3, N2) 

Diamond growth: CVD 

Butler et al. Phil. Trans. R. Soc. A 342, 209 (1993) 



Single crystal diamond 
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High Pressure High Temperature diamond 
OR 

Iridium 

Chemical Vapor Deposition 

• Pure (intrinsic) 
• Boron-doped  
• Phosphorus-doped 
• Nitrogen-doped 
… 
 

Diamond growth: CVD (Substrates) 

http://www.e6.com/ 



Polycrystalline diamond 
Dipping of substrate in 

detonation diamond  

suspension 
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Silicon, Pure glass 
(fused silica), 
Tungsten, …. 
 

Detonation Diamond   

Diamond growth: CVD (Substrates) 
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Suspension: 
Particles float around due 
to movement of liquid  

Diamond growth: CVD (Substrates) 

Polycrystalline diamond 



Polycrystalline diamond: nanocrystalline diamond 
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Silicon, fused silica, 
Tungsten, …. 
 

Chemical Vapor Deposition 

Nanocrystalline 
diamond film (NCD) 
(till 500 nm grains) 

Diamond growth: CVD (growth) 
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Diamond growth: Characterization 

Scanning electron microscopy: nanocrystalline diamond 



Polycrystalline diamond: microcrystalline diamond 
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Diamond growth: CVD (growth) 

Chemical Vapor Deposition 



Polycrystalline diamond: microcrystalline diamond 
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Microcrystalline 
diamond 
(from 500 nm grains) 

Diamond growth: CVD (growth) 



Outline 

• Diamond  

• Diamond growth 

• Intrinsic NCD layers 

• Boron-doped NCD 
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Intrinsic NCD layers 

Undoped nanocrystalline diamond layers 

Higher quality obtained by: 

 1. Increasing film thickness 
 AND/OR 

 2. Decreasing C/H-ratio  

Larger grains → less grain boundaries  
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Intrinsic NCD layers 

Nanocrystalline diamond layers 
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Silicon 
 

Grain 
boundaries 



Nanocrystalline diamond layer 

Higher quality obtained by: 

 1. Increasing film thickness 
 AND/OR 

 2. Decreasing C/H-ratio  

Larger grains → less grain boundaries 

Higher diamond quality  

 

Intrinsic NCD layers 
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Fixed Thickness 

Change C/H-ratio  



Growth Conditions 

• Temperature: 775 °C 

• Microwave Power: 3500 Watt 

• Pressure: 27 hPa (20 torr) 

• Thickness: 150 nm 

• C/H-ratio: 0.5%, 1%, 2%, 4%, 8% 
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Intrinsic NCD layers 



Thickness: Laser interference during growth 
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Intrinsic NCD layers 

Time 

Signal Laser 

Reactor 

Substrate 

Detector 



Thickness: Laser interference during growth 
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Interference: 
Every 50 nm 
3 X 50 nm = 150 nm 

Intrinsic NCD layers 

50 nm 100 nm 

150 nm 



Growth Time 
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0.5% C/H-ratio  
→ 80 min. 

Intrinsic NCD layers 

8% C/H-ratio  
→ 12 min.  

Thickness of 150 nm: 



Scanning Electron Microscopy 
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Grains become smaller with 
higher C/H-ratio 
→ decrease in quality? 

Intrinsic NCD layers 



Raman spectroscopy 
 

52 

Sensitive for vibrations of carbon atom bonds 

Intrinsic NCD layers 



Raman spectroscopy 
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Intrinsic NCD diamond layers 



Intrinsic NCD layers 

Raman spectroscopy 
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P3 = diamond peak 
Rest = non-diamond peaks 
 
Increase of diamond peak 
and decrease in other peaks 
when decreasing the 
methane concentration 
from 8% to 0.5% 



Intrinsic NCD diamond layers 

Conclusion 

Growth with lower C/H-ratio 

 1. Longer growth time  

 2. Larger grains 

 3. Higher diamond quality 
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Outline 

• Diamond  

• Diamond growth 

• Intrinsic NCD layers 

• Boron-doped NCD 
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Boron-doped NCD 

Heavily boron-doped NCD 

Growth with lower C/H-ratio 

 1. Longer growth time 

 2. Larger grains 

 3. Higher diamond quality 

 4. Boron incorporation? 

 5. Electronic properties? 
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Intrinsic 
diamond 

Janssens et al., 
New J. Phys. 13, 
083008 (2011) 
 



Boron-doped NCD 

Diamond vs. Silicon 

Single crystals  

 Electronic transport models similar 
  Same amount of Valence Electrons 
  Same Crystal Lattice 

Polycrystalline 

 Influence of grain boundaries on  

 Electromagnetic Transport Properties? 
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Doped polycrystalline silicon 
Morphology vs. electromagnetic transport: 

- Lu N C, et al. 1981 IEEE Trans. Electron Devices 28 818 
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Morphology vs. electromagnetic transport: 

- Lu N C, et al. 1981 IEEE Trans. Electron Devices 28 818 
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Doped polycrystalline silicon 

2w ≈ width GB for metallic doping 



Morphology vs. electromagnetic transport: 

- Lu N C, et al. 1981 IEEE Trans. Electron Devices 28 818 

 

 

 

Set of samples 

 d (variable)  varying C/H-ratio 

 ρSC and μSC (constant)  high B-concentration  

 2w approx. constant  high B-concentration 
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Doped polycrystalline silicon 



Growth Conditions 

• Temperature: 700 °C 

• Microwave Power: 3500 Watt 

• Pressure: 33.3 hPa (25 torr) 

• Thickness: 150 nm 

• C/H-ratio: 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5% 
4%, 4.5%, 5% 

• B/C-ratio: 5000 ppm 
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Heavily-doped B:NCD 



1 % 2 % 3 % 

4 % 5 % 

1% 2% 3% 

4% 5% 

63 

Higher C/H-ratio  
→ Grain size ↓ 

Heavily-doped B:NCD 

Morphology: Atomic force microscopy  
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Heavily-doped B:NCD 

Morphology: X-ray diffraction (Scherrer equation) 

Derived from May et al.: 

May et al., J. Appl. Phys. 101, 053115 (2007) 



• Hall bar shapes: 
- Protective Al mask  
  (lift off photolithography) 

- Oxygen plasma etch  
  (3 min, 300 W, 5.6 x 10-3 mbar) 

• Contacts: 
- Magnetron sputtered Ti/Al 
  (50 nm/200 nm) 
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Heavily-doped B:NCD 

1 cm 

Processing of samples: electronic measurements 



Heavily B:NCD 

Electronic properties: resistivity = ρ ÷ 1/(n μ) 
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1. Resistivity: 
5% > ... > 1% 

2. T-dependence: 
5% > … > 1% 

3. Intuitive explanation: 
grain boundaries 
induce a higher 
resistivity 

100 200 300 400
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1%2%3%4%5%
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1. Plot: 
ρ as a function of C/H-
ratio for all temperatures 

2. Approximation:  
Linear dependence for all 
temperatures 

Heavily B:NCD 

Electronic properties: resistivity 
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Heavily B:NCD 

Electronic properties: resistivity 

  

 


















d

w

d

w
SCGB

2
1

2


0 1 2 3 4 5

4

6

8

10

 

 


 (

m


 c
m

)

C/H-ratio (%)

 100 K

 200 K

 300 K

 400 K

Behavior can be explained 

T-dependence ρ ÷ 1/(n μ) ? 
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Heavily B:NCD 

1. Mobility (μ): 
1% > ... > 5% 

2. T dependence: 
 μ increases with T 

3. Intuitive explanation: 
grain boundaries 
scatter 

Electronic properties: mobility 
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Heavily B:NCD 

Electronic properties: mobility 

  

 1. Plot: 
μ-1 as a function of C/H-
ratio for all temperatures 

2. Approximation:  
Linear dependence for all 
temperatures 
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Heavily B:NCD 

Electronic properties: mobility 
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Heavily B:NCD 

Electronic properties: charge carrier density 

  

 

Behavior can be explained by more B-incorporation as a 
function of C/H ratio.  

No observed T-dependence for C/H-ratio 
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Heavily B:NCD 

Electronic properties: resistivity 
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• Active [B] from Hall effect measurements (nHall) 

• Total [B] from neutron depth profiling (nNDP)  
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Heavily B:NCD 

Active and total boron concentration: 

  

 
With increasing C/H-ratio 
1. Increase in boron incorporation 
2. More and more inactive boron 

incorporation 
 
    50-70% active incorporated  
 (@ 400K) 

 



• Nanoscopic investigation with TEM and EELS 
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Heavily B:NCD 

Active and total boron concentration: 

No preferential B-incorporation 
 

S. Turner et al. Nanoscale, 2012, 4, 5960 



• 150 nm thick B-NCD membrane on glass, in the 
middle of a Hall bar structure (to be published). 
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Heavily B:NCD 

Piezoresistive properties 
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Heavily B:NCD 

Soft X-ray detectors 

K. Kummer et al. Review of Scientific Instruments 2013, 84, 035105 

100 and 250 nm thick diamond membranes 
on silicon (0.5 mm by 0.5 mm) 
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